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LIQUID CRYSTALS, 1993, VOL. 15, No. 6, 859-869 

On the parabolic cyclide focal-conic 
defect in smectic liquid crystals 

by I. W. STEWART 
Department of Theoretical Mechanics, University of Nottingham, 

University Park, Nottingham NG7 2RD, England 

(Received 18 M a y  1993; accepted 22 June 1993) 

This article demonstrates how parallel equidistant layers of parabolic cyclides 
can be fitted together theoretically to achieve the layering configurations of the 
experiments reported in the smectic liquid crystal literature. The mathematical 
construction of the cylide layers is based on two confocal parabolas which 
correspond to the physical presence of focal-conic line defects in smectic liquid 
crystals. Suitable parameterizations of the cyclide surfaces allow the relationship 
between the layers and these parabolic defects to be presented in three-dimensional 
plots which show cross-sections of the layers near the defects. The results presented 
are discussed in relation to the static solutions of smectic continuum theory and 
experimental observations. 

1. Introduction 
There has recently been considerable interest in the focal-conic structure of smectic 

C liquid crystals. There are two main types of focal-conic defect which are relevant to 
smectics, namely, the well-known Dupin cyclide as discussed, for example, in [ 1-71, and 
the less familiar parabolic cyclide, examined and depicted in [4,6,8-11]. The 
geometrical construction of a cyclide is dependent upon a pair of confocal-conics. From 
Dupin’s definition it can be derived that cyclides are surfaces which are simultaneously 
the envelopes of two one parameter families of spheres whose centres lie along a pair of 
mutually perpendicular focal-conics. The Dupin cyclide has its structure based upon an 
ellipse and a hyperbola in mutually perpendicular planes, one branch of the hyperbola 
passing through a focus of the ellipse. The parabolic cyclide is constructed from two 
confocal-parabolas in perpendicular planes, each parabola passing through the focus 
of the other. Cyclides can be difficult to visualize: a convenient summary and pictures of 
such surfaces and their construction may be found in Hirst [ 111 or Hilbert and Cohn- 
Vossen [ 121. It is the aim of this article to show how parallel layers of parabolic cyclides 
may be built up in three dimensions. The corresponding structure for Dupin cyclides is 
already well documented in [lL5,7], but in all the references to parabolic cyclides only 
one individual layer [6,8,9] or two-dimensional cross-sections of layers [4,8, lo] have 
been pictured; although the three-dimensional parallel layering of parabolic cyclides 
has been discussed in [8,13], the structure had not been depicted. Three-dimensional 
plots of multiple layers will be presented in this article. The reason such plots have not 
been given before is that there seems to be a lack of a suitable parameterization of the 
cyclide surfaces. This problem, as shown below, may be overcome by employing the 
parameterization presented in [9,14]. It is then possible to visualize the internal 
layering structure for smectics in parabolic cyclide configurations. 

The plan of this article is as follows. Section 2 briefly summarizes the static 
equilibrium solutions for parabolic cyclides in smectic liquid crystals which have 
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860 I. W. Stewart 

recently been presented in [9,14] using smectic continuum theory. Section 3 examines 
and portrays graphically the internal layering structure for parabolic cyclide layers, the 
crucial parameterization being given by equation (3.4) below. The relationship with 
experimental obscrvations is also mentioned. The article concludes with a discussion in 
8 4. 

2. Equilibrium solutions for parabolic cyclides 
We begin with a brief mathematical description of smectic liquid crystals. Liquid 

crystals consist of elongated molecules for which the molecular long axes locally adopt 
one common direction in space, generally described by a unit vector n called the 
director. Smectic C liquid crystals are layered structures where the director n makes an 
angle 0 with respect to the layer normal. The unit vector a, the layer normal, is used to  
describe the equidistant parallel layer structure of smectics. Away from dislocations we 
must have [lS] 

V A a=O. (2.1) 
As in de Gennes 131, a unit vector c is introduced which is perpendicular to a and is the 
unit orthogonal projection of the director n on to the smectic planes: c is always 
tangential to the smectic layers. The two directors a and c are consequently subject to  
the further constraints 

a . a = c . c = l ,  a - c=O.  (2.2) 
Knowledge of a and c completely describes the smectic alignment. A bulk energy 
integrand based on a and c and their gradients can be constructed, namely [16], 

2 W = K , ( V . a ) 2 + K , ( V * c ) 2 + K , ( a - V ~  C ) ~ + K , ( C * V A  c ) ~  

+ K,(b * v A C)z +2K6(V -a)(b - v A C)+ 2K,(a - v A C)(c * v A c) 

+ 2 K ,(V - c)( b * V A c) + 2 K JV - a)(V * c) (2.3) 
where the K,s are elastic constants and b = a A c. These elastic constants are related to 
those introduced by the Orsay Group [17], as demonstrated in [16]. Using the 
continuum theory introduced in [ 141, minimizing this energy leads to two coupled sets 
of Euler-Lagrange equations, one set for a and the other for c. These equations contain 
four Lagrange multipliers on account of the four constraints contained in (2.1) and (2.2). 
The key to finding cyclide solutions to the equilibrium equations is to transform the 
equations to a more suitable coordinate system. Stcwart et al. [9], successfully 
transformed to a local orthogonal frame for the parabolic cyclides denoted {Q, 5, i}, 
where Q is the unit layer normal to the cyclide surface and 3 and 1 are local unit 
orthogonal vectors tangential to the cyclide surface (see 9: 3 below). Solutions to the 
transformed versions of the Euler-Lagrange equations for a restricted energy only 
containing the six terms K, to K, were found in [9], namely 

a=Q, c=A (2.4) 
The four Lagrange multipliers necessary for the solution of the equilibrium equations 
were also derived explicitly. It can be checked directly that the solutions (2.4) satisfy 
constraints (2.1) and (2.2); for full mathematical details of these solutions the reader is 
referred to [9]. Of course, the solutions (2.4) are not defined on the conics themselves, 
which appear as line defects. (A similar approach has been adopted by Nakagawa [7] in 
his solutions for Dupin cyclides for the same six term version of the energy.) It turns out 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
5
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



On the parabolic cyclide defect in smectics 861 

that the parameterization required to find static solutions also allows us mathemati- 
cally to construct and understand the parabolic cyclide layer structure, as will be 
discussed in the remainder of this article. Although this parameterization arose from 
examining non-chiral smectic C phases, it is expected that the geometrical structure of 
the layering will be the same for the smectic A and ferroelectric chiral smectic C* 
phases. 

3. Layers of parabolic cyclides in three dimensions 
The Cartesian equation of a parabolic cyclide can be conveniently written as 

[9,11,141 

X(X’ + y’ +z’) +(x’ + y ’ ) ( G - j ~ ) - ~ ~ ( t +  P)-(x - p  + G ) ( t  +/A)’ =O, (3.1) 
where the confocal-parabolas in mutually perpendicular planes essential to the 
construction of the cyclide are 

y’ = 4qx  + t), z = 0, (3.2) 

z2= -4Gx, y=o.  (3.3) 

and 

Here t and p are real parameters, -48 being the latus rectum ofparabola (3.3). We shall 
always assume that G # O .  As shown in [ 9 ] ,  varying p provides parallel families of 
parabolic cyclides. Equation (3.1) may be parameterized as [9,14] 

X =  (~(9~ + t’ - l )+ t ( tz  -9’- 1)}(1+ 9’+ t’)-’, 

y =  2t(G(9’+ 1) + p)(1+ 9’ +?)- I ,  

z=29(&t’-p)(1+9’+ t’)-’, 

where 

I -m<p<+m, 

-m<9<+m, 

(3.4) 

(3.5) 
-m<t< +a. J 

For fixed p ,  varying 9 and t maps out one complete cyclide surface. Continuing this 
process for different fixed values of p gives parallel layers of cyclides (equidistant if p 
changes by the same amount, for example, p = . . . - 2, - 1,0,1,2,. . . , etc). The parabolas 
(3.2) and (3.3) become, respectively, 

t 2 = p / e ,  z = o  (3.6) 

9’= - ( p + t ) / t ,  y=o.  (3.7) 

and 

It can be checked directly that the parameterization (3.4) satisfies the Cartesian equation 
(3.1). (It should be mentioned that Forsyth [ 181 has developed a similar parameteriz- 
ation which unfortunately contains errors.) 

To illustrate how layers are built up in smectic liquid crystals, we first note that 
there are three possible types of parabolic cyclide surface, depending on the relative 
signs and sizes of p and t. For example, it will be shown below that if G < O  then for 
0 < ,u < - t there are cyclides of the form depicted in figure 1 (where G = -4, and p = 1). 
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862 I. W. Stewart 

X 

3 
0 

Figure 1. The parabolic cyclide when / = -4 and p = 1 plotted for the ranges - 3 < 9 < 3 and 
- 5 < t < 5 .  

L" - 

Figure 2. Acusp appears when p=O. Here 8= -4 and - 3 < 9 < 3  with - 5 < t < 5 .  

When p = 0, a cusp point appears for any t # 0 as shown in figure 2, while 8 < 0 with 
,LL < 0 gives rise to the form pictured in figure 3 (where t = - 4 and ,LL = - 1) which has a 
'bridge' joining two cusp points lying on the parabola (3.6) in the xy-plane. Figure 2 is 
really a special case of figure 3, when the cusp points coincide at the vertex of parabola 
(3.6). Since we are principally interested in the defects near the foci of the parabolas, 
these surfaces are only plotted for - 3 < 9 < 3 and - 5 < t < 5 using equations (3.41, the 
complete surfaces being drawn if 9 and t are allowed to tend to co. As noted by 
Rosenblatt et ul. [8], the bridge part of the surface in figure 3 has no physical 
interpretation for liquid crystals: omitting this bridge has no consequence on thc 
mathematical static equilibrium solutions derived in [9], since solutions exist 
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On the parabolic cydide defect in smectics 863 

Figure 3. Bridges appear for / < p < O .  In this case f =  -4, p= - 1 and -3 6 9 < 3  with 
-5Gt  < 5 .  

Figure 4. This is figure 3 with the bridge omitted: / = -4, p = - 1 and the plot is for the ranges 
- 3  < 9 < 3  with - 5  < t  < - l /2  and 1/2< t <5. The bridge can only appear when 
- 112 < t < 112. 

everywhere on the cyclide surface except at the cusp points on the parabola at  each side 
of the bridge. We will demonstrate that omitting bridges (by suitably selecting the 
correct ranges for parameterization) will allow us to examine the three-dimensional 
equidistant layering of the cyclides. Figure 4 shows figure 3 without the bridge. 

For simplicity we shall always assume that L is fixed and d<O; the L'>O case is 
similar except for changes in signs of p. The reason for choosing d < 0 is that for small 
positive values of p we then have surfaces without defects as shown in figure 1, while 
small negative values of p give surfaces with defects as in figure 3: this leads to the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
5
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



864 I. W. Stewart 

Figure 5. Combining figures 1, 2 and 4 for p =  - 1,0, I yields this plot showing how parallel 
layers fit together. The other parameters and ranges are as in the relevant preceeding 
figures. 

convention of positivity in p for no defects and negativity in p for defects near the foci of 
the parabolas, where our main interest lies. In fact, there are always defects for d<O 
whenever p 2 - C or p < 0: for p < 0 the defects are on parabola (3.6), while for p 3 - C 
they lie on parabola (3.7). When p<O bridges based on parabola (3.6) appear 
for -,/(y/d)< t<,/(p/C) and when p >  -d bridges appear on parabola (3.7) for 
- J [  -(p + C)/k'] < 9 < ,/[ - (p + C ) / t ] .  Figure 5 shows three parallel layers built up for 
the cases G = - 4 and p = - 1,0, and 1,9 and t having the same ranges as in figures 1 
and 2, except for the y =  - 1 case where, to omit the bridge, we must only take 
- 5 < t < - 1/2 and 1/2 6 t < 5 (the bridge appears whenever - 1/2 < t < 1/2). Figure 5 is 
obtained simply by combining figures 1,2 and 4 together. We can of course build up 
more layers, but the plots become difficult to interpret and the internal layering 
structure will always be hidden (bridges also start appearing on the parabola (3.7) for 
p > - d, as shown below). For this reason we proceed to take slices through coordinate 
planes to show the internal structure. As in Hartshorne and Stuart [S], who discussed 
the Dupin cyclide, we shall examine cuts through the two planes containing the focal- 
conics, the remaining structure being clear from the symmetry and the three- 
dimensional plots. 

3.1. The z=O plune 
When z = 0, there is a line defect on parabola (3.6) in the xy-plane and we must, by 

(3.4), have one of the following possibilities: 

(i) 9=O, (ii) 9 =  +a, (iii) t2=p/C. (3.8) 

For p 30,  only (3.8) (i) and (ii) are relevant since d <O. In case (3.8) (i) we have from (3.4) 

I x=(t2- l ) ( f + p ) ( t Z +  l ) - ' ,  

y = 2t(C + p ) ( P  + 1)- ' . (3.9) 
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On the parabolic cyclide defect in smectics 865 

Clearly 

x2 + y 2  = (L' + p)2  (3.10) 

and therefore for 0 6 p 6 - L', we have complete circles in the xy-plane parameterized by 
(3.9) for - 00 < t < + 00 centred at (0, 0,O) and of radius I/ +pi. At p = - 6 we arrive at 
parabola (3.7) and bridges start appearing whose cusp points lie outside the z = O  plane 
for p > -/(and so do not appear in figure 6 below, since we assume that bridges can be 
ignored from physical considerations). Further, from case (3.8) (ii) and (3.4), we have to 
include the straight lines 

x=p-8, y = 2 t / ,  z = o ,  - c o < t < + + ,  (3.1 1) 

whenever p >, 0. Equations (3.10) and (3.1 1) complete the description of cross-sections of 
layers as we vary p in the z = 0 plane for 0 < ,u < + co: we have circles for 0 < p  < - L', 
together with straight lines for p 20. For the situation when p <O, equation 
(3.8) (iii) is possible: at p=O bridges start appearing on parabola (3.6). Again, both 
equations (3.9) and (3.1 1) still hold, the only difference being that to avoid bridges 
we must parameterize these equations only for the regions - co < td -J(p/6) and 
J ( p / / )  6 t < + 00. Figure 6 shows the resulting cross-section in the xy-plane when z = 0 
for the case L'= -4 and p ranges from - 7 to 11 in steps of 1. For simplicity the 
maximum and minimum values for t have been taken to be 2 and -2. The parabolic 
line defect corresponding to (3.6) is clearly visible and figure 6 matches the experimental 
observations depicted in Gray and Goodby [4], Rosenblatt et al. [8], and Benton and 
Miller [lo]. 

To observe the internal three-dimensional structure of the layering near z = 0 we 
can plot the cyclides using (3.4) and consider 9<0, effectively cutting the family of 
cyclides in two along the z = 0 plane. The resulting layers are shown in figure 7, where 
6 = -4 and p = - 2, - 1,0, 1,2,3,4,5,6. For 0 6 p 6 4, we have plotted equations (3.4) 
for - 3 < 9 6 0  and - 5 d t 6 5 .  To avoid bridges on parabola (3.6) for ,u = - 2, - 1, we 

X 

Y 

Figure 6. The cross-section of the layers in the xy-plane when G =  - 4 and p ranges from - 7 to 
11 in steps of 1.  The parabolic defect (3.2) (or, equivalently, (3.6)) is clearly visible. 
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866 I. W. Stewart 

Figure 7. The internal layering structure when families ofparabolic cyclides are cut through the 
plane z = 0. Here f = -4 and p ranges from - 2 to 6 in steps of 1. For the ranges discussed 
in the text, the surfaces p =  -2, - 1  require -3<9,<0 with - 5 , < t <  - J ( p / f )  and 
J(&)<t<5; O < p < 4  require -3,<9,<0 and -5< t<5 ;  p=5,  6 require -3<9< 
- d [ - ( p + f ) / f ]  and - 5 < t < S .  

have plotted for the ranges - 3 6 9 6 0  with - 5 6 t 6 - J(p/e) and J(p/ t ' )< t 6 5, while 
to omit bridges appearing on parabola (3.7) for p=5, 6 we have used the ranges 
- 5 6 t Q 5 and - 3 6 9 6 - J [  -(p + t')/t']. The full three-dimensional structure can be 
visualized by including the mirror image of figure 7 in the z = 0 plane and letting 9 and t 
tend to f co. It is clear from figure 7 that we recover figure 6 when we restrict our 
attention solely to the z=O plane and let 9 and t tend to f 00; the 'gaps' in figure 7 
actually close up to form the circles and straight lines of figure 6. 

3.2. The y=O plane 
From symmetry, there is also a parabolic line defect on parabola (3.7) in the 

xz-plane when y = 0. From (3.4), y = 0 whenever one of the following possibilities holds: 

(i) t =O, (ii) t = _+ co, (iii) g2 = -(p +/)/t'. (3.12) 

Analogous to the z=O case above, for p 6  -/, only equations (3.12) (i) and (ii) are 
relevant. In case (3.12) (i) we have 

I x =  { p ( P  - 1)-/(92 + 1)}(1 + 92)- 1, 

z =  -2941 +92)-1, 

and thus 

(x + /)2 + z2 = p2. 

(3.13) 

(3.14) 

Hence for 0 d p < - / we have circles in the xz-plane centred at ( - /, 0,O) of radius p and 
parameterized by (3.13) for - co < 9 < + co. When p = -t' we come to parabola (3.6) 
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On the parabolic cyclide defect in smectics 867 

I 

I 

Figure 8. The cross-section of the layers in the xz-plane when L = -4 and p ranges from - 7 to 
1 1  in steps of 1, the same layers as in figure 6. The parabolic defect (3.3) (or, equivalently, 
(3.7)) is clearly displayed. 

and, as earlier, bridges start appearing for p> - 4  whose cusp points lie outside the 
y = 0 plane; since bridges are ignored, they do  not appear in figure 8. Further, by (3.12) 
(ii) and (3.4), we must include the straight lines 

x = p + e ,  y=o, z=219, -cc<9<++, (3.15) 

wheneverp< -/.It now follow sthat thereare thecircles(3.14)forO<p< -t  together 
with the straight lines (3.15) for p <  -8. In the cases when p> -e, equation 
(3.12) (iii) is possible and bridges start appearing on parabola (3.7). Both equations 
(3.13) and (3.1 5 )  still hold for p > - t, the only difference being that we parameterize for 
- cc < 9 < - J [  - (p + t)/t] and J[ - (p + 4/t] < 9 + co, to avoid bridges. Figure 8 
shows the resulting cross-section in the xz-plane when y = 0 for the cases where t! = -4 
and p ranges from - 7 to 1 1 in steps of 1, the same layers as considered in figure 6. The 
maximum and minimum values for 9 have been set as 2 and -2. The parabolic line 
defect (3.7) is clearly displayed. 

To picture the internal layering in three dimensions near y=O, we may slice the 
family of cyclides along the xz-plane as shown in figure 9 where we only consider the 
relevant ranges for t 2 0. We choose t = - 4 and look at the same layers as in figure 7, 
namely p =  -2, - 1,0, 1,2,3,4,5,6. For O<p<4 we have plotted equations (3.4) for 
- 5 < 9 < 5 and 0 < t < 3 while, to omit bridges on parabola (3.7) for p = 5,6, we have 
plotted O<t<3 with -5<9< - J [ - ( p + + ) / t ]  and J[-(p+t)/t]<9<5 and for 
p = - 2, - 1 we have the ranges - 5 d 9 < 5 and J ( p / l )  < t < 3. The viewing position and 
parameter ranges are different from those in figure 7 in order to show the layers more 
perceptively. As before, the full three-dimensional structure includes the mirror image 
of figure 9 in the y = 0 plane, letting 9 and t tend to k 00. Figure 8 is recovered from 
figure 9 by looking at the y=O plane as 9 and t tend to f 00. From figures 6 to 9 the 
structure of the layers around the parabolic line defects becomes apparent. 
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868 I. W. Stewart 

Figure 9. The internal layering structure when families of paraboliccyclides are cut through the 
plane y = 0. Here L = -4 and p ranges from - 2 to 6 in steps of I, as in figure 7. In this case 
the viewing position of the layers and the extent of the ranges for 9 and t are different from 
those of figure 7 to make the configuration clearer. The surfaces p= -2, - 1 require 
- 5 < 9 < 5  with J(p/k),<t<3; OGpG.4 require -5,<9,<5 and O,<t<3; p=5, 6 require 
O<t<3 with -5<9< -J[-(p+C)/C] and , , / [ - (p+t) / / ]G9<5. 

4. Discussion 
Much of the relationship between parabolic focal-conic defects and liquid crystals 

has been discussed in Rosenblatt et al. [8], who mention, for example, that the cusps 
which appear are conical at the cyclide surface, having cylindrical symmetry about a 
line tangent to the parabola on which they lie. One important feature of the cusps is that 
they become less sharp as p-+ 5 a: this is also clear from figures 6 and 8. Examining the 
behaviour of static solutions near these conical cusps would be of great interest. 
Although [S] is mainly concerned with the smectic A phase, the appearance of the 
defects on the parabolas will be similar for other smectic phases, for example, the 
smectic C* phase. It would also be interesting to examine some of the ideas presented in 
18, lo] for the formation of multiple parabolic defects. It may be possible to utilize 
equations (3.4) and mathematically produce the internal layering structure by suitably 
intersecting groups of confocal-parabolas and choosing parabolas to match the 
observed physics. It is straightforward to program (3.4) for computer plots using the 
results of this paper and then experiment with various options of the parameters. 

Kleman [ 131 has discussed, from energy considerations, Dupin and parabolic 
cyclides using slightly different techniques to those used here. He mentions two types of 
parabolic cyclide configuration: his figure 6 (a) corresponds to the cyclides filling space 
as discussed in this paper, while his figure 6 (b) considers the parallel layers built up from 
considering only the bridges. This second configuration can be constructed, for 
example, from equation (3.4) by setting f < O  and plotting the bridges based on 
paraboIa(3,6)forp<O, where the ranges are - o o < 9 t c o  with - J ( p / f ) < t <  J(p//). 
From approximate calculations of smectic A energies (outside a central core radius) 
Klkman deduced that this second type of configuration has a higher energy than that of 
the first type; that is, cyclide layers constructed without bridges are energetically 
favoured over those consisting solely of bridges. This hclps to explain why the layers 
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On the parabolic cyclide defect in smectics 869 

depicted in $ 3  above have been observed more readily by Rosenblatt et al. [8]. 
Mathematically, it would also be interesting to find out if minimizing the energy (2.3) 
over a suitable region (not containing defects) with respect to 8 for the static solution 
(2.4) could lead to an optimum value o f t  which minimizes the energy in terms of the 
elastic constants. The distance between the foci could be measured and is simply ltl, as 
can be clearly seen from figures 6 and 8, where l81=4. (For example, in figure 6, It1 is the 
distance between the centre of the circles and the straight line at x=ItI=4.) An 
observed value of Id1 could then perhaps lead to an evaluation for combinations of 
elastic constants: in the special case of smectic A, this could perhaps allow a 
measurement of K ,  (the smectic A phase only has one bulk energy term, namely 
+K,(V- a)’). As mentioned by Kleman, the main problem to tackle in such an analysis 
would be the introduction of a core energy near the defects. 

The lines of curvature appearing in the three-dimensional plots presented above are 
actually locally parallel to the surface tangent vectors 3 andt.  This means that the static 
solution given by (2.4) represents the director c remaining parallel to the lines of 
curvature running, roughly speaking, along the z-direction when looking at the plot in 
figure 7 near the origin. Since this solution can only be derived for the first six terms of 
the smectic energy (2.3), it may be possible to examine the plots presented here in an 
attempt to find physically meaningful choices for c which could provide candidates for 
static equilibrium solutions to the Euler-Lagrange equations for all nine terms in the 
bulk energy used in the smectic continuum theory. 

The author wishes to thank Professor F. M. Leslie for many stimulating discussions 
on smectic liquid crystals and Professor J. W. Goodby for initially bringing to his 
attention the relationship between figures 1 and 3 and the experimental observations 
contained in [4]. Part of this work was carried out under the U.K. SERC funded 
Smectic Continuum Theory Consortium, coordinated by M. G. Clark at  the G.E.C. 
Hirst Research Centre in Wembley, England. 
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